
Journal of Chromatography, 517 (1990) 521-547 
Elsevier Science Publishers B.V., Amsterdam 

CHROMSYMP. 1938 

Influence of thermal variation of diffusion coefficient on non- 
equilibrium plate height in capillary zone electrophoresis 

JOE M. DAVIS 

Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 
62901 (U.S.A.) 

ABSTRACT 

A numerical algorithm is developed by which the radial profiles of temperature 
and mobility in an electrophoretic capillary can be computed from the steady-state 
equation of heat conduction. To determine these profiles accurately, the viscosity at 
any temperature is calculated to four significant figures from an expression different 
from the commonly used Andrade equation. The profiles so computed are used in a 
theory derived here, which addresses the impact of the thermal variation of diffusion 
coefficient on the axial dispersion of analyte ions in capillary zone electrophoresis. 
The magnitude of this dispersion is expressed as the non-equilibrium plate height. 
The numerical computation of this plate height indicates that this variation becomes 
significant only when the difference in temperature between the capillary center and 
wall exceeds cu. 5°C. The plate heights computed here can differ by more than a factor 
of two from those based on the Andrade equation, even when the variation of the 
diffusion coefficient is ignored. These differences originate from the relative inaccu- 
racy of this equation. 

INTRODUCTION 

This paper addresses the influence of the thermal variation of diffusion 
coeffkient on the non-equilibrium plate height of analyte ions in capillary zone 
electrophoresis (CZE). The origin of non-equilibrium dispersion in CZE is the gradient 
in temperature caused by the Joule heating of the capillary contents. Because 
electrophoretic mobilities increase with temperature, analyte ions migrate faster near 
the capillary center, where the temperature is higher, than near the capillary wall, 
where the temperature is lower. The resultant dispersion is mitigated by the radial 
diffusion of analyte ions, which averages out these differences in velocity to some 
degree. 

Other theories for the non-equilibrium plate height or the effective diffusion 
coefficient, which is proportional to this plate height, in CZE have been derived. (As 
shown below, the effective diffusion coefficient is a calculated measure of the axial 
dispersion caused by the radial variation of analyte velocity.) Many of these theories 
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differ only slightly from one another. By representing the Poiseuille flow in an open 
tube by three discrete components, Konstantinov and Oshurkova’ derived an 
approximate effective diffusion coefficient analogous to that of Taylor293. Martin and 
Everaerts4 suggested an analogy between the effective diffusion coefficient for 
chromatography, as derived by Golay’, and that for CZE. Cox et aL6 approximated 
the radial variation of analyte velocity by an equation derived by Hjerten’; he then 
solved the equation of continuity, from which the plate height was calculated, by 
making an analogy with the work of Aris ‘. In a work closely related to that of 
Konstantinov and Oshurkova’, Virtaneng calculated an effective diffusion coefficient 
for CZE by modifying Taylor’s effective diffusion coefficient for dispersion in open 
tubes. Similarly, Knox and Grant’o modified Taylor’s theory of dispersion to calculate 
the non-equilibrium plate height. Most recently, Grushka et al. l1 adapted the theory 
of Reejhsinghani et al.” to calculate from the equation of continuity an effective 
diffusion coefficient, from which the non-equilibrium plate height was evaluated. 

A common attribute among these theories is the calculation (by a variety of 
means) of the mean square axial displacement of the analyte from the mean analyte 
position. The random-walk theory of dispersion shows that this result is proportional 
to the time required for ions to diffuse between two characteristic positions in the 
capillary, at which their velocities significantly differ 13. In all of the above theories, this 
time is approximated as a constant. Because the diffusion coefficient of analyte ions 
increases with temperature, however, the time required for ions to diffuse from one 
position to another is reduced near the capillary center, where the temperature is 
higher, relative to that near the capillary wall, where the temperature is lower. In other 
words, this time is not constant but varies with the radial position in the capillary. No 
attempt has been made to determine under what conditions this approximation breaks 
down and the radial variation of the diffusion coefticient becomes important. This 
paper does so. 

In some of the theories referenced above, detailed equations for plate height were 
evaluated with analytical expressions for the temperature and electrophoretic mobility 
of analyte ions in the capillary. In general, these expressions apply when the difference 
in temperature between the capillary wall and center is vanishingly small. They are 
only approximately correct, however, when this temperature difference is large, i.e., 
when non-equilibrium dispersion is large. Because the temperature difference, above 
which the variation of diffusion coefficient is important, is unknown (indeed, its 
determination is the goal of the paper), one does not know apriori if these expressions 
are appropriate for this study. To obtain a fairly rigorous solution, these expressions 
are not used here except in limiting cases. Instead, expressions for the temperature and 
electrophoretic mobility are computed numerically from the steady-state equation of 
heat conduction. These expressions are free of all but the most fundamental 
assumptions and are, in principle, applicable over a wide range of temperatures. 

THEORY 

The theory of this paper is composed of two parts. In Part I, the proliles of 
temperature and electrophoretic mobility are computed from the steady-state 
equation of heat conduction. In Part II, an expression for the non-equilibrium plate 
height is derived, in which the radial variation of the diffusion coefficient is addressed. 
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Numerical values of this expression are then evaluated with the temperature and 
mobility profiles computed in Part I. 

Part I: Determination of radial temperature and electrophoretic-mobility profiles 
Here, one will assume that thermal convection, thermal diffusion, and heat 

transfer from electroosmotically induced forced convection are negligible. One will 
also assume the analyte concentration is vanishingly small, such that the electrical and 
thermal properties of the capillary contents are determined by the buffer only, and the 
analyte does not alter the electric field strength. Finally, one will assume that the 
equilibrium constants governing the dissociation of the buffer and analyte do not vary 
over the range of temperatures experienced by the buffer. (These assumptions will be 
critiqued later.) The radial temperature profile in the capillary is then governed by the 
steady-state equation of heat conduction’4*‘s 

- !-Jrk,(re] = k,(r)E’ (1) 

where r is the radial coordinate, T(r) is temperature, k,(r) and k,(r) are the thermal and 
electrical conductivities of the buffer, and E is the electric field strength. Although one 
should strictly interpret the conductivities k,(r) and k,(r) as functions of radial 
coordinate r14*1s, one alternatively can (as commonly does) interpret them as 
functions of temperature T(r) (ref. 15). By introducing the variables 

y = 5; (Q) = T(-yjT- To 
0 

(2) 

one can reexpress eqn. 1 in the dimensionless form14 

- (3) 

where a is the capillary radius, T,, is the temperature at the (inner) capillary wall, k,, and 
k,, are the thermal and electrical conductivities of the buffer at this wall, and B is 

(4) 

Several solutions to eqn. 3 have been developed, which differ in the approxima- 
tions chosen for the reduced conductivities k&)/k,, and k&)/k,,. When these 
approximations equal the constant, one (i.e., when the conductivities are independent 
of temperature); the solution to eqn. 3 is simply 

f%_Y) = $1 - Y2) (5) 
lim B-0 

Others have solved eqn. 3 more rigorously to address the dependences of k&)/k,, and 
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k,Q)/k,, on temperature. Broer14 expressed these functions as two-term expansions in 
fQ) and so accounted for the linear variations with temperature of the electrical and 
thermal conductivities. By equating k&/k,, to one and k&)/k,, to a two-term 
expansion in O(V), Coxon and Binder16, Brown and HinckleyX7, and Jones and 
Grushka18 obtained Bessel functions as solutions to eqn. 3. These functions account 
for only the linear variation with temperature of the electrical conductivity. 

The most general solution to eqn. 3, subject to the boundary conditions 
dQ)/dy = O(,=,-, (because of radial symmetry) and 6b) = O],= 1 (because T = T,, at 
the wall), is 

where the ratios, k&)/k,, and k,(y)/k,,, are now represented by the functions fb) and 
hb), respectively. These functions vary with the radial coordinate y because the 
conductivities vary with temperature. In other words, h@) and fb) vary with T(y) = 
T,[l + (IQ)]. But t’9Q) is unknown; it is the function one seeks. In solving eqn. 6a, one is 
saddled with the circular task of determining 001) from two functions which themselves 
depend on 6b). 

A general solution to eqn. 6a is developed here, but not because the solutions to 
e(v) referenced above are inadequate. Rather, as will be shown below, the non- 
equilibrium plate height depends on the function fb), which describes the radial 
variation of the electrophoretic mobility. By judiciously developing the solution to 
eqn. 6a, one can determine fb) without any assumptions beyond those outlined at the 
beginning of this section. To achieve this objective, one must sacrifice analytical rigor 
for numerical methods. As compensation, however, one circumvents the shortcomings 
that others have encountered in the derivation of approximations to f@), especially for 
large values of B. 

An iterative numerical algorithm by which fb) can be computed is now outlined. 
For any value of B, one can solve eqn. 6a numerically by initially equating f@) and hb) 
to one. In this case, the solution to Q) is eqn. 5, within numerical error. For any value 
of To, this solution to t9b) defines the temperature Tat all values ofy (in this case, T = 
TJ + B(l - y*)/4], from which new approximations to fb) and h@) can then be 
calculated from empirical functions of temperature for the electrical and thermal 
conductivities. In other words, the temperature at any coordinate y defines the values 
of the electrical and thermal conductivities at that coordinate; the ratios of that 
electrical conductivity to k,,, and that thermal conductivity to kt,, define the values of 
the functions fb) and h(v), respectively, at that coordinate. One can then substitute 
these new approximations to fb) and hb) into eqn. 6a, numerically integrate with 
respect to y, and compute a new solution to 0b). This solution will differ from the 
previous one, because the functions fo1> and hb) now differ from one. From this new 
solution to Q), one can again calculate the temperature at all values of y and new 
approximations to fb) and hb), as before. One can iteratively repeat this algorithm, 
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until f@), h@), and 0(y) converge to constant values. When this convergence is 
reached, then one has an excellent approximation to the function fb) that one needs to 
describe the radial variation of electrophoretic mobility. 

To implement this algorithm, one must have accurate functions for hb) and fb) 
at different temperatures. These functions will be represented by h[T@)] = h[T,, S(V)] 
and QTQ)] = @“,,,Q)], respectively. Over the temperature range, 7-97°C the 
function h[T,,f-Q)] for water can be described with an accuracy of one part per 
thousand [at least, for the values 280, 290, 300, . . ., 370 K (ref. 19)] by the quadratic 

U~o,fX_dl = 1 + ~IN_v) + M%_Y>~ (7) 

where 

al = (6.090. 1O-3 To - 1.511. lo-“c)/d (7a) 

a2 = -7.555. lo+ c/A (7W 

A = -0.5390+6.090. 1O-3 T,,- 7.555’1O+c (7c) 

and where To is expressed in degrees Kelvin. These equations were determined by 
fitting a quadratic function of T to tabulated values of the thermal conductivity of 
waterlg and then by reexpressing T = T(y) in terms of eb), eqn. 2. The function 
A (eqn. 7c) is the quadratic approximation to the thermal conductivity of water at the 
temperature To, in W/(mK). Lest any ambiguity exist in the use of eqn. 7, one should 
perhaps again state that the value of h[T,,fQ)] at coordinate y in a given iteration is 
determined from To and the value of 0b) computed at that coordinate in the previous 
iteration. Eqn. 7, although determined for water, is also adequate for electrolytic 
buffers, because salts contribute to the thermal conductivity by an amount less than 2 . 
10m5 W/(mK) or so per ion, as long as their molar concentration is less than 0.1 (ref. 
20) a concentration which is rarely exceeded in CZE. 

The function QT,,,@y)] is developed from the electrical conductivity k,(T), which 
is21 

k(T) = ~zi(T)lAT)ICi(T) = eF 
z:(T) 

I JIf 
mCi(T) (8) 

where F is the Faraday constant; e is the fundamental electrical charge; and zi pi, Ci, 
and fri are the unsigned number of charges, the electrophoretic mobility, the 
concentration, and the friction coefficient of the ith ion, respectively. If one neglects 
the variation of zi and Ci with temperature (the former, from changes in screening by 
the electrical double layer, extent of ionization, etc.; the latter, from volume 
expansion), then eqn. 8 may be expressed as 
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where Ai equals the constant Zi’Ci and the explicit dependence of friction coefftcientf, 
on viscosity q has been expressed asf,i( 7’) = Aim. If one now assumes that the 
plane of hydrodynamic shear (and hence the effective ionic radius) is independent of 
temperature, then Ai is also independent of temperature. Consequently, as first shown 
by Hjerten’, flT,,&)] can be approximated as 

where q,, is the viscosity at the inner capillary wall. 
Many empirical equations have been proposed to describe the dependence of 

viscosity on temperature 2o Here, two such functions for the viscosity q of water are . 
critiqued. Over the temperature range, 155100°C n can be described to four significant 
figures byZ2 

1.3272(293-T)-1.053.10-“(293-T)’ 

? = v29310 T-168 
(11) 

where Tis expressed in degrees Kelvin and l/2g3 is the viscosity of water at 293 K. This 
empirical equation accurately predicts to four significant figures values of viscosity 
measured to five significant figures 23. By combining eqns. 10 and 11, one can express 
f[~oJW1 as 

4~0,KY)l = 10 ~c.[Cle(Y) +h~(Y)‘Ih% 
(124 

where 

fil = 165.9 + (1.053. 10-3)(293 - T,)(43 - T,) (12b) 

B2 = (1.053~10-3)T,(T, - 168) (12c) 

p3 = (To - 168) {T$?O + 11 - 168) (12d) 

For small values of B, eqn. 12 can be linearized by expanding eqn. 12a as a two-term 
Taylor series, neglecting the quadratic power of O(J) in this expansion, and neglecting 
e(v) in coefficient p3. The result is 

(1 - Y2) f(Y) x 1 + cteb) = 1 + crB_ 
4 lim B-0 

(13a) 

WWITo 
a = (To - 168)2 (13b) 

where t?(y) has been approximated by eqn. 5. 
In other studies7’” , q alternatively was represented by the Andrade equation” 

q = q*eB~lT (14) 
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for which 

where BA is an empirical temperature commonly equated to 2400 K. By representing 
this equation by a two-term Taylor-series expansion and expressing Ok) in this 
expansion by eqn. 5, others showed79” 

KY) 
w 1 + hBc’ - r2) 

lim B-0 T’ 4 
(16) 

The expansions, eqns. 13 and 16, are clearly different; they are equal only when 
T,, satisfies the equation 

B = WO)PlT;f 
* (TO - 168)2 

(17) 

or when TO w 4”C(BA = 2400 K). At all other temperatures, eqns. 13 and 16 will 
predict different values for the variation of electrophoretic mobility with temperature 
and consequently the non-equilibrium plate height. 

In spite of its common use, eqn. 14 describes the variation of q with temperature 
somewhat poorly. In support of this assertion, Table I reports estimates of q calculated 
from eqns. 11 and 14 for selected temperatures grouped in intervals of two degrees. 
This two-degree interval was chosen as an arbitrary upper limit to the temperature 
difference between the capillary center and wall that one might encounter in CZE, 
under experimental conditions where Joule heating is marginal. For each group, the 
parameter q* was computed by fitting to eqn. 14 (BA = 2400 K) with least-squares 
methods the three values of rl computed from eqn. 11. The rl values so calculated agree 
with those calculated from eqn. 11 only to within two significant figures. Also, the 
variation of q* from group to group is substantial, which indicates that a larger 
temperature range could not be spanned by eqn. 14 with any accuracy. These 
equations predict different values of r,r at different temperatures, principally because 
they have different values of dq/dT. 

The differences between these values raise some doubts about the accuracy of 
electrophoretic mobilities calculated from the Andrade equation. In this paper, eqn. 11 
will be used for this task, unless otherwise stated. As will be shown below, these 
differences are so substantial that eqn. 16 predicts non-equilibrium plate heights that 
can be 150% larger than those predicted by eqn. 13, other factors being equal. 

Part II: Derivation of non-equilibrium plate height for radially dependent diffusion 
coefficient 

Here, the dispersion theory of Reejhsinghani et aLI2 is used to address the 
influence of the radial variation of the analyte diffusion coefficient on the non- 
equilibrium plate height in CZE. This theory draws heavily on Taylor’s studies of 
dispersion2*3 and was also used by Grushka et al.” in a recent calculation of plate 
height, in which this variation was ignored. In essence, this theory simplifies the 



528 J. M. DAVIS 

TABLE I 

COMPARISON OF VISCOSITIES rj CALCULATED FROM EQNS. 11 AND 14 

Parameter q* was determined by least-squares regression. 

T f-c) Eqn. II Eqn. 14 q* . IO4 

(CP) 

25 0.8905 0.8942 
26 0.8705 0.8704 2.843 
27 0.8513 0.8475 

35 0.7194 0.7231 
36 0.7053 0.7051 2.986 
31 0.6916 0.6877 

45 0.5960 0.5995 
46 0.5856 0.5855 3.163 
47 0.5755 0.5719 

55 0.5041 0.5074 
56 0.4962 0.4962 3.369 
5-l 0.4885 0.4854 

65 0.4335 0.4365 
66 0.4274 0.4275 3.600 
61 0.4214 0.4187 

75 0.3781 0.3805 
16 0.3732 0.373 1 3.848 
71 0.3685 0.3658 

85 0.3337 0.3359 
86 0.3298 0.3297 4.119 
87 0.3259 0.3236 

equation of continuity to an ordinary differential equation, whose solution determines 
an effective diffusion coefticient from which the plate height is calculated. The theory 
developed below may be construed as an extension of these more fundamental works. 

One develops this ordinary differential equation from the equation of continuity 
in radial coordinates, which is14 

where N, and N, are respectively the one-dimensional radial and axial fluxes 

(20) 
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and where z is the axial coordinate, t is time, c = c(r,z,t) is the analyte concentration, 
and v, and v, (0, and D,) are the analyte velocities (diffusion coefftcients) in the radial 
and axial directions. No angular flux appears, because of radial symmetry. If one again 
assumes that thermal convection and thermal diffusion are negligible, then v, = v,(r) is 

where p(r) is the electrophoretic mobility at coordinate r and pea is the electroosmotic 
flow coefficient (both /A and pea are signed quantities). Here, one has assumed that 
capillary diameters are sufficiently large that one can neglect the variation of 
electroosmotic flow in the electrical double layer at the capillary-buffer interface. 
Hence, the electroosmotic flow equals peoE. One has also assumed that the steady-state 
equation of heat conduction applies and that v, does not vary with t, as it does during 
a brief initial transient16. 

The mobility can be expressed as p(r) = -&C/q(r) (ref. 24) where E and c are the 
electrical permittivity of the buffer and the zeta potential of the analyte. If one neglects 
the variation of these parameters with temperature, eqn. 21 may be expressed as7qi1 

(22) 

where cl0 = -&C/Q, is the electrophoretic mobility of the analyte at the capillary wall 
and f(r) is the equivalent of fb), but now expressed in terms of the dimensioned 
coordinate, I, instead of the dimensionless coordinate, y = r/a. (For the moment, 
equations in r are more convenient than equations in y; the final results will be 
expressed in terms ofy.) Eqn. 22 marks the first appearance of the function f(r) [or f(v)], 
which is determined numerically as described in Part I. 

If one now assumes that D, is independent of z and that thermal diffusion is 
negligible (i.e., that v, = 0), then the substitution of eqns. 19 and 20 into eqn. 18 yields 

$ + vZ(r$f = k$ 
1 1 rD,(r)ff + DZ$ (23) 

where the dependence of D, = D,(r) on radial coordinate r is expressed explicitly. 
By defining the coordinate z1 = z - Vt, where Vis the average analyte velocity in 

the axial direction, one can implement the standard coordinate transformation 

with which eqn. 23 can be expressed as 

$ + [v,(r) - V$- = if 
1 [ 1 rD,(r)$ + DZF d 

(24) 

(25) 
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The theory of Reejhsinghani et al.” is now used to simplify eqn. 25. First, the 
concentration c is approximated by the two-term expansion 

adzd 
c = cm(zl) + ~ 

aZ im (26) 
1 

where c,(zr) is the cross sectional average concentration (2) 

(1 
2 

c,,,(zJ = - 
a2 s 

rcdr (27) 

0 

and g(r) is a function to be determined. By combining eqns. 26 and 27, one can showI 

II 

s rg(r)dr = 0 

0 

(28) 

which will prove useful 
Because cm(zl) is independent of r, and derivatives of c,,,(zl) with respect to zr of 

order two or greater are negligible compared to &,,,(z,)/az, (ref. 12), the following 
additional approximations hold 

ac ad4 dgw 
%“r dr 

ac acdzd 
z&Tg- 

aEN 
at -0 

(294 

cw 

By substituting eqn. 29 into eqn. 25 and neglecting derivatives of c,(zl) with 
respect to z1 of order two or greater, one obtains the ordinary differential equation 

v=(r) - V = !$--rDr(r~] 

which integrates to 

(30) 

I 

s d&9 
r[v,(r) - Fjdr = rD,(r)F 

0 

(31) 
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where the right-hand side, rD,(r)dg(r)/dr, equals zero at r = 0 (the lower limit of the 
integral on the left-hand side), because dg(r)/dr equals zero at r = 0. (Obviously, the 
right-hand side is also zero at r = 0, because the first factor of this function is r.) The 
function dg(r)/dr equals zero at r = 0, because the diffusive flux 

hn(z~) &s(r) -D,(r); = -D,(r)-- az, dr (32) 

is zero at r = 0, because of radial symmetry. Because neither D,(r) nor &,(zJaz, is 
zero at r = 0, eqn. 32 equals zero at r = 0 only if dg(r)/dr equals zero at r = 0. This 
function is also zero at r = a, because analyte cannot diffuse across the capillary wall. 
This latter equality will prove most useful later. 

If the radial gradient in temperature is the only cause of the radial variation of 
D,(r), one can express this variation as2o*25 

(33) 

where A’ is a constant, whose value depends on the physical properties of the analyte 
and buffer. The theoretical origin of this expression is the Nernst-Haskell equation, 
which describes the mutual diffusion coefficient of a salt at infinite dilution20*25. Eqn. 
33 is also theoretically justified for molecular species by the Stokes-Einstein 
equation20T25, which in turn forms the basis of the empirical equations for the mutual 
diffusion coefficient of Wilke and Chang20,25; Tyn and Calus2’; Nakanishi”; Ring, 
Hsueh and Mao”; and Reddy and Doraiswamy”. 

With eqn. 33, one can express the ratio of D,(r) to D,,, the value of D,(r) at the 
capillary wall, as 

(34) 

from which one concludes 

D,(r) = &f(r)10 + 11 (35) 

where t?(r) is the equivalent of 0(y), but expressed in terms of r, instead of Y. 
By substituting eqn. 35 for D,(r) in eqn. 31, one can show 

(36) 

where g(0) is the value of g(r) at r = 0. Eqn. 36 alternatively can be expressed in terms 
of coordinate y = r/a as 

Y Y 

a2Q 
g(Y) - g(0) = D s 1 

- 
10 Yf(J#KY) + 11 S[ 

Y fW 2)yfcY)dy dydy 
0 1 

0 0 

(37) 
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where v,(r) is expressed by eqn. 22 and the average zone velocity V is 

in accordance with this equation. One observes that pea subtracts out in this result; the 
electroosmotic flow causes no dispersion. 

A brief outline of the calculation of the non-equilibrium plate height from eqn. 
37 may be appropriate here, because Reejhsinghani et al. l2 provide little detail in their 
work, and Grushka et al. l1 simply cite their result (actually, its negative). The analysis 
below differs from that of Reejhsinghani et al.” as best as the author can tell, but it 
parallels that of Giddings in his plate-height studies of chromatography13 and 
field-flow fractionation26. In any case, the result is the same as that derived by 
Reejhsinghani et al. The average convective flux, < cv,(r) > , in the axial direction can 
be expressed with eqn. 26 as 

< cv,(r) > = 
2GdZl) a s rv,(r)dr 

2 &n(Zl) a 
~ 

a2 
+ -~ 

a2 az, s 
rg(r)v,(r)dr 

0 0 

(39) 

The first term in this equation equals the average convective flux, c&z& which 
represents the translation of the average zone concentration at the average zone 
velocity. The second term represents a dispersive flux, which alternatively can be 
expressed by Fick’s first law, -5Mc,(z1)/8z1, where 9 is an effective diffusion 
coefficient equal to 

a 

9 = -f 
s 

rg(r)v,(r)dr (404 

0 

and from which the non-equilibrium plate height His calculated as B/I (refs. 11, 13 
and 26) 

(I 1 

H = ---& 

s 

rgWv&)dr = -z 

s 

ygWv,Cy)dy (41) 

0 0 

So far, the theory developed here parallels that of Grushka et al.’ I, except that 
the radial variation of diffusion coefficient has been included. Now, a slight departure 
is taken. One does not need to determine the constant of integration g(0) in eqn. 37, as 
did Grushka et al.“, to evaluate eqn. 41, because this latter equation also equals 
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(42b) 

To demonstrate this equality, one expands eqn. 42a to the result 

The second term in this expansion equals zero, by virtue of eqn. 28. The third and 
fourth terms respectively equal -g(O)V/2 and +g(O)V/2 and cancel one another, 
regardless of the value of g(0). (In fact, they cancel one another, regardless of the lower 
limit of the outermost integral in eqn. 37. Advantages accrue if one chooses Y = 0 as 
the lower limit, however, as will be shown below.) Only the first term, which equals 
eqn. 41, remains. This simplification of theory is identical to that developed by 
Giddings26 in his non-equilibrium theory of field-flow fractionation. 

By combining eqns. 37 and 42b, one can express H as 

l Y Y 
H = _WwoE)2 

D ij S[ Y f-w - 25yflv)dY 
10 0 S[ Y f-W - &Wdy 4vlv-b 

0 1 
0 0 0 

This cumbersome result fortunately can be simplified substantially by integra- 
tion by parts, in a manner identical to that developed by Giddings2’ in the 
non-equilibrium theory of field-flow fractionation. If one lets 

Y Y 

U= s 1 

YfW HY) + 11 I[ 
Y fcV) - 2jyfcV)dy dydy 

0 1 
0 0 

and 

dV = y f(j) - 2;yf(y)dy dy 
0 1 

(45) 

(46) 

then eqn. 44 can be expressed as 

H = _4(a~OE)2 
&Iv s UdV = -4(T)‘[ U( - ;VdU] (47) 

m 0 0 
0 

1 

where UVI implies that U(JJ = 1) and V(y = 1), and U(y = 0) and V(y = 0), are 
0 

multiplied, and that the latter product is subtracted from the former. The function 
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(48) 

is the dimensionless equivalent of eqn. 3 1, which is zero at both r = 0 and r = a 0, = 
0 and y = l), because dg(r)/dr equals zero at both these limits (see discussion 

1 

immediately following eqn. 31). Therefore, the first term, UVI , equals zero, and eqn. 
0 

47 reduces to 

where one has now taken advantage of the equality, Vb = 0) = 0, to express the 
product of two integrals as the square of the same integral. 

Eqn. 49 can be expressed in the dimensionless form 

which is the desired theoretical result. 
In general, eqn. 50 must be evaluated numerically, because fb) and I are 

computed numerically, as detailed in Part I. For small values of B, however, an 
analytical solution can be determined by approximating 130) and fb) in eqn. 50 by 
eqns. 5 and 13, respectively. In this case, eqn. 50 integrates to the somewhat awkward 
result 

lim B-0 

B2a(~_a,[(l +~)ln(l+~)--71 (51) 

where a is defined by eqn. 13b. By using the expansion 

(1 +i)ln(l+$)-~-~-&+&-&+... 

where y is any real number, one can approximate eqn. 51 by 

(52) 

(53) 
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where To is in degrees Kelvin, a has been explicitly expressed, and #I1 is defined by eqn. 
12b. 

To test this theory, one should compare eqn. 50 to the analytical result derived by 
Grushka et al.“. To make this comparison, one must “turn off’ the radial variation of 
the diffusion coefficient in eqn. 50 by equating the functions fCy) and 0b) to one and 
zero, respectively, in the expression, {yf(_v)[@) + l]} - ‘. In this case, eqn. 50 becomes 

1 Y 
HD,,1 

~ 
hwoE)2 

= 4 f(r) - 2 j,,), 11 dy ‘dr (54) 
0 

0 0 
lim D,(r) +D, 

If fb) in eqn. 54 is now equated to eqn. 16, the approximation to fb) used by Grushka 
et al.’ ‘, then eqn. 54 integrates to the simple analytical result 

lim B+O 
D.(+‘Dm 

At first glance, eqn. 55 seems quite different from the result of Grushka et al. “, which 
in dimensionless terms is 

(This equation, as expressed in ref. 11, actually has a minus sign in the denominator, 
instead of a plus sign; this appears to be a typographical error.) The apparent 
difference between eqns. 55 and 56 arises from the neglect of electroosmotic flow in the 
derivation of eqn. 56, which makes the mean analyte velocity u,,, different from the 
mean analyte velocity ? described here. One can easily show 

64 um (PoE)~ _ 
V (8 + B&P-d2 (57) 

lim B-+0 
D,W-+Dm 

when pea = 0 and f is calculated from eqns. 16 and 22. By substituting eqn. 57 into eqn. 
55, one does obtain eqn. 56, as expected. One should perhaps observe that the inclusion 
of the electroosmotic flow is essential to an accurate description of plate height, even 
though it causes no dispersion. The flow does affect the analyte residence time and 
consequently the number of diffusive steps which partially average out differences in 
analyte velocity. 

In conclusion of this section, one should note that the accuracy of the theory 
developed by Grushka et al. ” should be substantially improved by substituting the 
right-hand side of eqn. 17 for BA in eqns. 55 and 56. This substitution corrects these 
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authors’ otherwise sound work for the shortcomings of the Andrade equation, with the 
result 

HD,V 1 
’ 

(acLoE)z = 
- 
1536 

(In 10)j?lT,,B/(T, - 168)’ 1 (584 lh B+O 
D,(r) -t Dr. 

H& 1 (In 10)BIT,B/(T, 168)2 1 
2 

- 

-Y--= a u, 24 1 2 

+ (In 10)j?lT,,B/(T, - 168)2 
(SW 

lim B+O 
J&W-‘&a 

where /I1 is defined by eqn. 12b. One notes that eqn. 58a is simply the first of the two 
terms comprising eqn. 53, which approximately corrects for the radial variation of the 
diffusion coeflicient. The percentage error between eqns. 55 and 58a is 

{[B,(T, - 168)2/ln(10)/?1~]2 - l}lOO (59) 
h-n B-0 

4(r)-& 

and is a function of To only. 

PROCEDURES 

Numerical approximations to I!@), eqn. 6a, were computed for specific values of 
Band To as detailed in Part I of the Theory section. Unless otherwise stated, f[T,, e(y)] 
was calculated from eqn. 12. Numerical solutions to (Q) were iteratively calculated, 
until f3@) differed by less than one part in two thousand from its predecessor. For small 
B values (e.g., B = O.OOOl), only two or three iterations were required; for large 
B values (e.g., B = 0.40), 20 to 25 iterations were required. The dimensionless 
non-equilibrium plate height, HD,,~/(ap,E)2, was then calculated from eqn. 50 with 
the numerical approximations to fb) and 0b) so determined. For purposes of 
comparison, HD,o~/(apoE)2 was also computed from eqn. 54, in which the radial 
variation of the diffusion coefficient is ignored. Here, fb) was also computed 
iteratively. This sequence of calculations was then repeated for other values of B and 
To. All numerical integrations were implemented with Simpson’s rule and 399 discrete 
values of y, fb), h@), and e(y). The computer program prerequisite to these 
computations was written in double-precision FORTRAN 77 and executed on the 
IBM 3081-GX computer at Southern Illinois University. 

RESULTS AND DISCUSSION 

Fig. 1 is a plot of log B vs. To for select values of radius a and 0.01 and 0.05 M 
phosphate buffers (pH 7.0), which are representative of those used by Jorgenson and 
Lukacs in their initial studies 28*2g. These B values were calculated from eqn. 4 with the 
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Fig. 1. Plots of log B vs. T0 for select capillary radii a, E = 50 000 V/m, and 0.01 and 0.05 M phosphate 
buffers (PH 7.0). Values of B were calculated from eqn. 4 as detailed in the text. 

indicated a values, appropriate values of k,,( T,) and k,,( T,,), and E = 50 000 V/m. In 
these calculations, k,,(T,) was calculated from eqn. 7c, whereas k&To = 25°C) was 
calculated from eqn. 8, the electrophoretic mobilities of the H,PO;, HPOZ-, and 
PO:- ions at infinite dilution3’, and the concentrations of these ions, which were 
determined from the acid dissociation constants of phosphoric acid at 25”C31 and 
mass balance. The values of k,, at other temperatures were then estimated by 
correcting k,, (To = 25°C) for the variation of viscosity with temperature. Because the 
relationship between viscosity and temperature is almost exponential, the graphs of log 
B vs. To are almost linear. Although the field strength E one uses in these calculations is 
arbitrary, only a few studies have been carried out with E values greater than 50 000 
V/m (ref. 32). Hence, almost all B values actually will be smaller than these, under 
otherwise identical conditions. These plots show that under typical experimental 
conditions (e.g., buffer concentrations less than 0.05 M; radii less than 37.5 pm; field 
strengths less than 50 000 V/m), B is less than 0.01. 

Fig. 2 is a plot of Q)/B vs. y for select values of B and To = 25°C. The lowermost 
bold curve is a graph of eqn. 5, which applies as B approaches zero. The other curves 
were computed with the iterative numerical algorithm described in Part I. To confirm 
this algorithm, the numerical solutions to I!?(Y) so computed were compared to the 
Bessel functions proposed by Coxon and Binder16, Brown and Hinckley”, and Jones 
and Grushka’s. No substantial difference exists between these solutions, as long as 
B < 0.20; for larger B values, the variation of f(y) with 0@) is no longer linear and 
Bessel functions no longer apply. (These comparisons were actually made by setting 
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Fig. 2. Plot of @O/B vs. y for select values of B and T. = 25°C. The lowermost bold curve was calculated 
from eqn. 5; the other curves were computed numerically. 

h[T,JQ)] to unity, since Bessel functions apply when the thermal conductivity is 
constant. If one allows h[T,,Q)] to vary with temperature, the Bessel functions are 
actually acceptable solutions up to B = 0.30 or so, because this variation partially 
compensates for error.) It is unlikely that a flawed algorithm would make predictions 
that so closely agree with theory. In general, the algorithm always appears to converge 
to the appropriate global solution to 00); no erroneous local solutions were ever 
computed in these comparisons. 

One can conclude from Fig. 2 that eqn. 5 is a fairly good approximation to Q) 
for values of B less than 0.01 or so. For much larger B values, however, this solution is 
clearly inadequate. By comparing the numerical solutions to Q)/B for various 
B values, one infers that their departure from eqn. 5 is non-linear in B (e.g., the 
difference between the values of B(y)/B at y = 0 for B = 0.40 and B = 0.20 is more 
than twice the corresponding difference for B = 0.20 and eqn. 5, which applies as B -+ 
0). The principal relevance of these departures to this work is the inadequacy of the 
analytical approximations to f(v), eqns. 13 and 16, when B is greater than 0.01 or so. 
These approximations are inadequate because they were derived with eqn. 5, which is 
invalid under these circumstances. 

Fig. 3 is a plot of [f(j+- l]/B vs. y for select values of B and To = 25°C. The 
lowermost bold curve in the upper figure (Fig. 3a) was calculated from eqn. 13, the 
analytical approximation to fb) derived here. The dashed bold curve in this figure, and 
the lowermost bold curve in the lower figure (Fig. 3b), were calculated from eqn. 16 
(BA = 2400 K), the analytical approximation to fb) derived from the Andrade 
equation. Clearly, these approximations differ at this To, and this difference increases 
with increasing T,, (see below). Because this figure effectively represents the variation 
of electrophoretic mobility (less the mobility at the wall) with the radial coordinate, 
one concludes that substantial differences will exist between plate heights calculated 
from these two functions, even for vanishingly small values of B. 

The remaining curves in Fig. 3a and b were computed numerically. In Fig. 3a, 
flTJ!&_y)] was calculated from eqn. 12, whereas in Fig. 3b, flT,,,fQ)] was calculated 
from eqn. 15. The numerical solutions to f@) do not substantially differ from the 
appropriate analytical one, as long as B is less than 0.01 or so. This finding is perhaps 
not surprising, because the function eb), on which flT,,,&y)] depends, can be 
approximated under these conditions by eqn. 5. For larger values of B, however, the 
numerical solutions to fb) differ substantially from the analytical ones. As with Q), 
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Fig. 3. Plots of [ffJ)- II/B VS. y for select values of B and T, = 25°C. The lowermost bold curve in (a) was 
calculated from eqn. 13; the dashed bold curve in (a), and the lowermost bold curve in (b), were calculated 
from eqn. 16. The other curves were computed numerically, with fir,,@)] expressed by eqn. 12 for the 
curves in (a) and by eqn. 15 for those in (b), 

the departures of the numerical solutions to f(y) from the analytical ones are non-linear 
in B. More importantly, significant deviations between Fig. 3a and b are found as 
B increases. For example, when B = 0.30, the value of [f(v) - l]/B at y = 0 in Fig. 3a is 
3.10, whereas the corresponding value in Fig. 3b is 8.73. These large deviations indicate 
the necessity of describing q correctly for large B values. The principal origin of these 
deviations is the overestimation of flT,,,@)] by eqn. 15, which in turn causes the 
functions 6(_v) and f@) to be overestimated. By the time these functions have 
converged, after many iterations of the numerical algorithm, these overestimations 
have been amplified many times. 

As another test of the algorithm developed here, a numerical solution to fb) for 
B = 0.0001 was iteratively computed and compared to the analytical solution, eqn. 13. 
One would expect little difference between these solutions, since B 6 0.01. In fact, 
these solutions differed beyond only the seventh or eighth significant figure. In other 
words, an extremely accurate solution to fb) was calculated numerically. The author 
believes that this test confirms this algorithm beyond any reasonable doubt. 

Fig. 4 is a plot of the logarithm of the dimensionless plate height, log 
HD,V/(U@)~, vs. log B for select values of T,. The abscissa, log B, in each graph is 
limited by the boiling point of the buffer; therefore, log B is largest for the smallest T, 
values. Because the curves only slightly differ for different T, values, they are graphed 
either on different axes or in different plots. The solid curves are graphs of eqn. 50, 
which corrects for the radial variation of the diffusion coeIIicient; the dashed curves 
are graphs of eqn. 54, in which this variation is ignored. For B values less than 0.0 I or 
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Fig. 4. Plots of log HD,~/(t~p.E)~vs. log B for select values of T.. Solid curves were computed from eqn. 50; 
dashed curves were computed from eqn. 54. The former equation corrects for the radial variation of the 
diffusion coeffkient; the latter does not. 

so, HD,V/(U@)~ varies linearly with B2 (i.e., the slope of the log H&i@@)2 vs. log 
B plot is two), although this variation is not shown to avoid the loss of other details. 
Furthermore, the radial variation of the diffusion coefficient has no significant effect 
on the plate height. For B values greater than 0.01 or so, however, HD,,,V/(U@)~ 
varies more rapidly with B than B2, because e(y) and f(y) vary with a power of B greater 
than one (see above). More importantly, for B values greater than 0.01 or so, the radial 
variation of the diffusion coefficient also affects the plate height, and this effect 
increases with increasing B. In these cases, the temperature near the capillary center 
rises sufficiently above To to substantially increase diffusion in this region, relative to 
that near the wall. Because the time required for analyte ions to diffuse between various 
positions in the capillary is correspondingly reduced, the differences in analyte velocity 
at these positions are more effectively averaged out and the plate height decreases. 

Because the radial variation of the diffusion coefficient does not significantly 
affect H&,~/(u@?)~ unless B is greater than 0.01 or so, one concludes that eqns. 51 
and 53, which analytically correct for this variation, have little use. This lack of utility 
exists, because the analytical approximations to fb) and &JJ) with which these 
equations were derived are themselves not valid, when B is greater than 0.01 or so. 
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Fig. 5. Plot of percentage error PE between eqns. 50 and 54 vs. log B for select values of T.. The former 
equation corrects for the radial variation of the diffusion coeffkient; the latter does not. 

A comparison of the values of HD,~/(a@‘)2 computed numerically from eqn. 50 to 
those calculated from eqn. 53 confirms this finding. (Much numerical error is 
encountered in the evaluation of eqn. 5 1 for small B values, even in double-precision 
FORTRAN; hence, these results are not compared to eqn. 50.) Unfortunately, with 
the theory developed here, one cannot determine a simple analytical correction to plate 
height theory which holds when the radial variation of the diffusion coefficient is 
important. 

The differences between the corrected and uncorrected values of HD,,V/(U~,E)~ 
in Fig. 4 are perhaps underemphasized because of the logarithmic scale. Fig. 5 is a plot 
of the percentage error, PE, between eqns. 50 and 54 VS. log B for select values of To. 
The radial variation of the diffusion coefficient is accounted for in the former equation, 
whereas this variation is “turned off’ in the latter equation. To evaluate both 
equations, the functions f@) and 0(v) were computed numerically, because B is greater 
than 0.01. The percentage error between these equations is less than one or so, when 
B is less than 0.01, but rapidly increases with increasing B. The rapid rate of this 
increase is not apparent from the figure, which is compressed in the vertical direction to 
avoid loss of detail. For example, the value of PE for To = 15°C and log B = -0.40 
(B = 0.40) slightly exceeds 150. 

An arbitrary percentage error, above which one might wish to correct for the 
variation of the diffusion coefficient, is indicated in Fig. 5 by the horizontal line at 
PE = 10. The calculated temperature differences A T between the capillary center and 
wall at this threshold are indicated in the figure for the various T,, values. These 
differences, which are greater than 5°C are nearly a linear function of To (the 
increment is OX’C per 10°C increase in To). By and large, this threshold is not crossed, 
unless B is greater than 0.08 (log B > - 1.1) or so. Because experimental values of 
B almost invariably will be less than this value (see Fig. l), one can typically neglect the 
variation of the diffusion coefficient and use the simpler equations for plate height 
referenced in the Introduction, in which this variation is ignored. Thus, in one sense, 
the extensive theory derived above may seem somewhat academic. Yet, one must bear 
in mind that the numerical rigor supporting the conclusion just drawn would not have 
been possible without it. 

Fig. 6 is a plot of HD,V/(U@)~ VS. log B for select values of To. Unlike in Fig. 4, 
the curves here are not corrected for the variation of the diffusion coefftcient. The solid 
curves, the curves comprised of short dashes, and the curves comprised of long dashes 
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Fig. 6. Plots of log H&?/(a@‘)z vs. log f3 for select values of r,. The solid curves, the curves comprised of 
short dashes, and the curves comprised of long dashes are graphs of eqns. 54,55 (B* = 24tJO K) and 5ga, 
respectively. None of these curves corrects for the radial variation of the diffusion coefticient. 

are graphs of eqns. 54,55 (BA = 2400 K) and 58a, respectively. The last two equations 
are analytical approximations to the first, which was evaluated numerically. Eqn. 58a, 
in which fb) is expressed by eqn. 13, agrees well with this numerical solution, when B is 
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Pig. 7. Plot ofpercentage error PE between the solutions of Grushka ef al. ‘I and those developed here vs. T0 
for small B values. Circles represent computations from eqn. 54 and B = 0.0001; the curve is a graph of eqn. 
59 (& = 2400 K). 
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less than 0.01 or so, but differs with increasing B. Furthermore, the predictions of eqns. 
55 and 58a significantly differ, even when B 4 0.01. (Eqn. 55, in which fb) is expressed 
by eqn. 16, is equivalent to the result derived by Grushka et al.“, except that 
electroosmotic flow is included.) This difference increases with increasing To and 
originates solely from the choice of the function f(y) with which one evaluates eqn. 54. 
Because eqn. 16 is greater than eqn. 13 (see Fig. 3a), the values of HD,~/(ap,E)z 
predicted by eqn. 55 are greater than those predicted by eqn. 58a. 

The differences between the values of HD,~/(apoE)2 derived here and predicted 
by Grushka et al. l1 are perhaps underemphasized in Fig. 6, because of the logarithmic 
scale. Fig. 7 is a plot of the percentage error PE between these values vs. T,, for 
B + 0.01. The circles represent the percentage error computed numerically from eqn. 
54, when B = 0.0001 and fiT,,@y)] was alternatively represented by eqns. 12 and 15. 
The solid curve is a graph of eqn. 59 (BA = 2400 K), which clearly approximates this 
error. This error substantially increases with increasing To and is greater than 100% for 
To > 50°C or so, a value that is not that uncommon experimentally33*34. 

CONCLUSIONS 

The principal significance of this work is its validation of previous analytical 
solutions to the non-equilibrium plate height in capillary zone electrophoresis. The 
fairly rigorous treatment developed here, which is based on an iterative solution to the 
steady-state equation of heat conduction and the inclusion in the continuity equation 
of the radial variation of diffusion coefficient, does not differ from simpler analytical 
ones, unless the temperature difference between the capillary center and wall 
substantially exceeds that encountered in practice. This work also establishes the range 
of the parameter B over which these analytical solutions apply and suggests that the 
Andrade equation can mislead one about values of electrophoretic mobility and 
non-equilibrium plate height, especially at elevated temperatures. 

A shortcoming of this work is the lack of any relationship between the 
temperature To of the capillary wall and the ambient temperature of the capillary 
surroundings. The latter is easily measured, whereas the former is not. Therefore, some 
relationship between the two is prerequisite to the testing of this theory. Others have 
addressed this problem”“6-‘8 and their results can be easily adapted here. 

No theory is better than the assumptions on which it rests. Most of the 
assumptions made here (e.g., the absence of thermal diffusion, the absence of heat 
transfer from electroosmotically induced forced convection, and the independence of 
chemical equilibria of temperature) are fairly reasonable ones. The assumption of 
a vanishingly small analyte concentration may be subject to criticism, since in practice 
one works with detectable levels of analyte, which can affect plate numbers29. For 
better or worse, others have made this assumption and the author has made it as well. 
Perhaps in this light, this study should be viewed as more comparative than definitive. 

One may wish to investigate more closely the assumption of negligible thermal 
(i.e., free) convection, because the AT values reported in Fig. 5 are somewhat 
substantial. Experiments in wide-bore capillaries have clearly demonstrated the 
necessity of rotating the capillary contents to minimize dispersion by free convection’, 
A detailed evaluation of the expected amount of free convection is beyond the author’s 
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ability. A rough evaluation is gained by calculating the dimensionless free-convective 
Nusselt number14 

Nu x 0.5(PrGr)‘14 (60) 

where Pr = C&k, and Gr = a3gdAT/1’ are the dimensionless Prandtl and Grashof 
numbers. (In these deli&ions, the parametersg, C,, 6, and Iz are the acceleration due to 
gravity and the constant-pressure heat capacity, thermal coefficient of expansion, and 
kinematic viscosity of the buffer.) At 25”C, the Prandtl number of dilute aqueous 
buffers is about 6.16 [C, = 4180 J/kg K, q = 8.90. 10e4 kg/ms, and k, = 0.605 W/m K 
(ref. 35)], whereas the Grashof number can be approximated as 3.16 . 10gATa3 [g = 
9.8 1 m/s2, 6 = 2.57. 10e4 K-‘, and 1 = 8.93. IO-’ m2/s (ref. 35)]. Fig. 5 indicates that 
ATwill rarely exceed 10°C = 10 K, whereas a will rarely, if ever, exceed 2.5. 10m4 m. 
Thus, NU is expected to be less than 0.65 or so. According to the author of ref. 36, this 
value of NZJ indicates that free convection should be minor. 

In spite of the rigor of these calculations, they remain at best approximate, 
because the viscosities of the buffers used in capillary zone electrophoresis are greater 
than the viscosity of pure water. Furthermore, the variations with temperature of the 
viscosities of pure water and buffers most probably differ. In these calculations, one 
has implicitly assumed they are equal. In general, the error so introduced depends on 
the buffer type and concentration and consequently is difftcult to quantify. One can, 
however, gauge the magnitude of this error by a simple calculation. The viscosity of a 
0.051 Msolution of phosphoric acid at 20°C is about 1 .OlO cp (ref. 35), which is 0.008 cp 
greater than the viscosity of water at this temperature (1.002 cp). If one modifies the 
numerical algorithm to increment rl by 0.008 cp during each iteration, such that QT,, 
0(y)] is appropriately adjusted, one finds that the values of H&,F/(ap&2 so computed 
differ from previous computations by less than 4%, when 15°C < To < 65°C and 
B < 0.01. Clearly, this calculation is greatly oversimplified. It does suggest, however, 
that the increased viscosity has only a small effect, as long as the buffer concentration is 
less than 0.05 M. 

SYMBOLS 

Ai 
Af 
A’ 

‘fi 
BA 

fiilrt (m) 
Zi2Ci (mol/m3) 

Q(r)?(r)/Tr) (kg m/s2 K) 
capillary radius (m) 
k,,a2E21k,,T0 
empirical temperature in Andrade equation, commonly equated to 
2400 K 
analyte concentration (mol/m3) 
cross sectional average concentration (mol/m3) 
concentration of ith buffer ion (mol/m3) 
constant-pressure heat capacity (J/kg K) 
radial diffusion coefficient (m2/s) 
radial diffusion coefficient at inner capillary wall (m2/s) 
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axial diffusion coefftcient (m2/s) 
effective diffusion coefftcient (m2/s) 
fundamental electrical charge (C) 
electric field strength (V/m) 
M_W,O; k,(r)/L 
k[Td’Cvlllko = rlo/tl[To,N_dl 
friction coefficient; friction coefftcient of ith ion (kg/s) 
Faraday (C/mol) 
acceleration due to gravity (m/s2) 
function defined by eqns. 36 and 37 (m) 
value of g(y) and g(r) at y = r = 0 (m) 
MW,, 
WoA_dllkto 
non-equilibrium plate height (m) 
dimensionless non-equilibrium plate height 
electrical conductivity (mho/m) 
electrical conductivity at inner capillary wall (mho/m) 
thermal conductivity (W/m K) 
thermal conductivity at inner capillary wall (W/m K) 
radial flux (mol/m’ s) 
axial flux (mol/m’ s) 
radial coordinate (m) 
time (s) 
temperature (K or “C) 
temperature at inner capillary wall (K or “C) 
average elctrophoretic mobility in theory of Grushka et al.” (m’/V s) 
average zone velocity (m/s) 
radial velocity (m/s) 
axial velocity (m/s) 

rla 
axial coordinate (m) 
unsigned charge number of ith ion 
z - St(m) 
ln(lO)fllT,/(T, - 168)’ 
coefficients of h(T,,,@ defined by eqn. 7a and b 
coefficients of h(T,,8) defined by eqn. 12b-d 
coefticient of thermal expansion of buffer (K- ‘) 
thermal conductivity of water (W/m K) 
temperature difference between capillary center and wall (“C) 
electrical permittivity (F/m) 
zeta potential (V) 
viscosity (kg/m s) 
viscosity at inner capillary wall (kg/m s) 
qe -Ba’T (kg/m s) 
[T(Y) - ToYTo; [T(r) - TollTo 
kinematic viscosity (m2/s) 
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P electrophoretic mobility (m2/V s) 

Pea electroosmotic flow coefficient (m2/V s) 
Al electrophoretic mobility at inner capillary wall (m2/V s) 
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